الجمعة، 27 سبتمبر 2013


من الطبيعي عزيزي القارئ انك تعاملت مع الخلايا الشمسية من خلال استخدامك للالة حاسبة مزودة بخلية شمسية كمصدر للطاقة الكهربية تعمل بدون بطارية وتستمر في العمل دون توقف طالما توفرت كمية كافية من الضوء. كما ان هناك الواح شمسية كبيرة تستخدم في تطبيقات متعددة ومنها على سبيل المثال في الاقمار الصناعية حيث تعتبر المصدر الرئيسي للطاقة الكهربية. 
إن الاعتماد على الطاقة الشمسية كمصدر للطاقة الكهربية هو الحل الامثل للحصول على طاقة مجانية وغير ضارة للبئية. إن كمية الطاقة التي تصل إلى الارض من الشمس في يوم مشرق تقدر بـ 1000 وات لكل متر مربع وبالتالي لو تم تزويد اسطح منازلنا بمجموعة من الالواح الشمسية المتراصة يمكن ان نحصل على طاقة كهربية مجانية كافية لمتطلبات الحياة اليومية. 

ومن الجدير ذكره ان أسبانيا بدأت في مارس 2007 بتطبيق قانون جديد يلزم من يقدم على بناء عقار أو تجديد مبنى بإنشاء وحدة لتحويل الطاقة الشمسية على سطحه. يأتي ذلك في إطار جهود الحكومة الأسبانية للحد من الطلب المتزايد على الطاقة، والحد من التلوث الناتج عنها. وطبقا لتقديرات حكومية، فإن لوحا للخلايا الشمسية بمساحة مترين مربعين موضوع على سطح أحد المنازل يمكن أن يوفر ما بين 30 إلى 70 % من الطاقة اللازمة لتسخين المياه على حسب موقع المبنى وكمية المياه المستخدمة. 



ألواح من الخلايا الشمسية 

في هذه المقالة من كيف تعمل الاشياء سوف نقوم بشرح فكرة عمل الخلايا الشمسية وكيف تقوم بتحويل الطاقة الشمسية إلى طاقة كهربائية. كما سوف نعرف اخر المستجدات والتطورات التي تسهل علينا من استخدام الخلايا الشمسية كمصدر للطاقة وما هي اهم العقبات التي تواجه العلماء الان. 
خلايا الفوتوفولتيك: تحويل الفوتون إلى الكترون 

الخلايا الشمسية المستخدمة في الالات الحاسبة وفي الاقمار الصناعية هي عبارة عن خلايا فوتوفولتيك photovoltaic cells وهي عبارة عن مجموعة من الخلايا الكهربية موصلة مع بعضها البعض في اطار واحد على شكل لوحة. وكلمة فوتوفولتيك هو اسم مشتق من طبيعة عمل الخلية فكلمة فوتو photo تعني ضوء وكلمة فولتيك voltaic تعني كهرباء، وهذا يعني تحويل ضوء الشمس إلى كهرباء. في البداية كانت خلايا الفوتوفولتيك تستخدم في الاقمار الصناعية ومحطات الفضاء للحصول على الكهرباء من اشعة الشمس مباشرة والان بدأت تدخل في العديد الأجهزة الالكترونية وفي السيارات قريباً سوف نستخدمها كمصدر للطاقة الكهربية في منازلناً. والسؤال الان كيف تعمل خلية الفوتوفولتيك؟ 

تصنع خلية الفوتوفولتيك من المواد اشباه الموصلات semiconductors مثل السيليكون وكل خلية فوتوفولتيك مكونة من بلورة واحدة من السيلكون وتشكل مجموعة كبيرة من خلايا الفوتوفولتيك الخلية الشمسية. وببساطة عندما تسقط اشعة الضوء على الخلية فإن جزء من الضوء يتم امتصاصه من قبل ذرات السيليكون، اي ان طاقة الضوء قد امتصت من قبل مادة الخلية. تعمل هذه الطاقة على اثارة الالكترونات الغير مرتبطة في المادة وتجعلها تتحرك بحرية داخل المادة. وعندما تتعرض هذه الالكترونات الحرة لمجال كهربي فإنها سوف تتحرك كلها في اتجاه واحد وهذا يعني تيار كهربي وعند ربط طرفي خلية الفوتوفولتيك بنقطتي توصيل على السطح العلوي والسطح السفلي للخلية نحصل على تيار كهربي طالما استمر سقوط الضوء على خلية الفوتوفولتيك. وهذا التيار الكهربي هو الذي يشغل الالة الحاسبة وبمعلومية قيمة التيار الكهربي المار في الدائرة وفرق الجهد الكهربي المتولد على طرفي خلية الفوتوفولتيك يمكن ان نحصل على قيمة الطاقة الكهربية (الطاقة الكهربية (وات) = التيار الكهربي (امبير) x فرق الجهد الكهربي (فولت)) التي يمكن ان تولدها الخلية الشمسية. 

هذا الشرح المبسط في الحقيقة يخفي تفاصيل اكثر واعمق ولكن كان بهدف اعلامك عزيزي القارئ المبدأ الرئيسي لفكرة عمل الخلية الشمسية، والان سوف نقوم بتفصيل الموضوع اكثر من خلال تكبير خلية الفوتوفولتيك والتي هي كما ذكرنا خلية من بلورة واحدة من السليكون. 

كيف يعمل السيلكون كخلية شمسية 

يمتلك السيلكون بعض الخواص الكيميائية في تركيبه البلوري. فذرة السيليكون تحتوي على 14 الكترون موزعة على ثلاث مستويات طاقة. مستويين الطاقة الاول والثاني الاقرب للنواة يكونان ممتلأن تماماً بالالكترونات والمستوى الثالث أو المستوى الخارجي يحتوي على 4 الكتورنات فقط اي يكون نصفه ممتلئ والنصف الاخر فارغ حيث ان المدار يكتمل بـ 8 الكترونات. وتسعى ذرة السيليكون لان تكمل النقص في عدد الالكترونات في المستوى الخارجي ولتفعل ذلك فإنها تشارك اربع الكترونات من ذرات سيليكون مجاورة وبهذا ترتبط ذرات السيليكون بعضها البعض في شكل تركيب بلوري وهذا التركيب البلوري له فائدة كبيرة في خلية الفوتوفولتيك كما سنوضح ذلك في الشرح. 



ذرات السليكون مرتبطة مع بعضعها البعض مشكلة تركيب بلوري منتظم لايوجد فيه الكترونات حرة 

لقد قمنا بوصف بلورة سيليكون نقية وللعلم بلورة السيليكون النقية لا توصل التيار الكهربي بكفاءة لانه لا يوجد الكترونات حرة لتنقل التيار الكهربي حيث ان كل الالكترونات قد قيدت في التركيب البلوري. ولهذا ولكي يتم استخدام السيليكون في الخلية الشمسية فإننا بحاجة إلى إجراء تعديل بسيط في التركيب البلوري. 

التعديل البسيط هذا هو عبارة عن اضافة ذرات عناصر اخرى (تسمى عملية تطعيم doping) وهذه الذرات الاضافية نسميها شوائب impurities وهي ضرورية لعمل الخلية الشمسية بغض النظر عن اسمها شوائب وقد يفهمها البعض انها ذرات غير مرغوب فيها وسوف نكتشف ذلك من خلال الشرح. 

يتم اضافة (تطعيم) ذرات الفوسفور بنسبة بسيطة جداً تصل إلى 1:1,000,000 وذرة الفوسفور تحتوي على 5 الكترونات في مدارها الخارجي ولهذا عندما تدخل الشبكة البلورية بين ذرات السيليكون ستشارك بـ 4 الكترونات ويبقى الكترون حر. 



تطعيم ذرات السيليكون بذرات فوسفور 

الان تتضح فكرة عمل الشوائب في ذرات السليكون فلو تم تزويد السليكون النقي بالطاقة ولتكن طاقة حرارية مثلاً لوجدنا ان بعض الالكترونات تتحرر وتترك مكانها شاغر نسميه فجوة hole. تعمل هذه الوجوة على السماح لالكترون في الجوار بالانتقال اليها تاركاً فجوة اخرى وهكذا تستمر حركة الالكترونات في اتجاه وحركة الفجوات في الاتجاه المعاكس وهذه الحركة هي تيار كهربي. ولكن في حالة ذرات السليكون المطعمة بذرات الفوسفور يصبح الامر مختلف من ناحية ان الطاقة اللازمة لبدأ تحريك الالكترونات اقل بكثير من حالة السليكون النقي. وتسمى اشباه الموصلات التي تطعم بذرات تحتوي على الكترونات اضافية بالنوع N-type اي النوع السالب لانه اضاف الكترون للتركيب البلوري للذرات. ولهذا يعتبر السيليكون المطعم بالفوسفور موصل افضل من السيليكون النقي. 

كما انه يوجد تطعيم بذرات توفر الكترونات اضافية هناك تطعيم آخر بذرات لها عدد اقل من الالكترونات وتسمى المواد الناتجة عن هذا التطعيم بالنوع P-type اي النوع الموجب. 

وفي الحقيقة الخلية الشمسية تحتوي على كلا النوعين النوع الموجب والنوع السالب. والامر الاهم هو ما يحدث عن توصيل النوعين معاً حيث تنتقل الالكترونات الحرة في النوع السالب إلى الفجوات في النوع الموجب. 



تذكر عزيزي القارئ ان الالكترونات المتحررة من الخلية الفوتوفولتيك تحتاج الى مجال كهربي ليحركها، ولعلك تساءلت من اين يأتي هذا المجال الكهربي؟ 



تركيب الخلية الشمسية 

كما ذكرنا منذ قليل ان الالكترونات تنتقل الى الفجوات وتتحد معها ولكن لا تستمر عملية الانتقال هذه إلى ان تتحد كل الالكترونات مع كل الفجوات وتتوقف العملية لان ما يحدث هو ان بعد ان تنتقل المجموعة الأولى من الالكترونات وتتحد مع الفجوات يشكل حاجز عند المنطقة التي تصل النوع الموجب عن النوع السالب ويمنع هذا الحاجز المزيد من الالكترونات الاخرى في النوع السالب الاتحاد مع فجوات في النوع الموجب ويتكون عن المنطقة بين النوعين مجال كهربي. 



المجال الكهربي المتولد في كل خلية فوتوفولتيك 

هذا المجال الكهربي يعمل عمل الديود diode حيث يسمح بمرور الالكتورنات من الجزء الموجب إلى الجزء السالب ولكن ليس العكس. وبهذا يكون لدينا في كل خلية فوتوفولتيك مجال كهربي يحدد اتجاه حركة الالكترونات. 

عندما يسقط الضوء المكون من فوتونات عند طاقة معينة على الخلية الفوتوفولتيك فإنه يعمل على تحرير الكترون وفجوة بالقرب من الحاجز حيث المجال الكهربي فيتم تمرير هذا الالكترون في اتجاه الجزء السالب تحت تأثير المجال في حين تنتقل الفجوة إلى الجزء الموجب تحت تأثير المجال. وعندما يتم توصيل طرفي الخلية (النوع السالب طرف والنوع الموجب طرف) بدائرة خارجية فإن هذه الالكترونات سوف تتحرك لتعود إلى موضعها الاصلي وكذلك الفجوات وهذه الحركة هي التيار الكهربي الذي نريده. 



فكرة عمل الخلية فوتوفولتيك عند سقوط فوتون الضوء على الخلية تتحرر الكترونات وفجوات تنتقل الالكترونات تحت تأثير قوة المجال الكهربي في الخلية إلى الجزء السالب وتنتقل الفجوات إلى الجزء الموجب ولكن تعود مرة أخرى الى موضعها الاساسي عند توصيلها بدائرة خارجية. 

ملاحظة: يتم طلي الخلية الشمسية بمواد تمنع انعكاس الفوتونات الضوئية عند سقوطها على الخلية لان السليكون يشكل طبقة لامعة تعكس الضوء وهذا ما لا نريده ان يحدث. 

يتم توضع طبقة رقيقة جداً على سطح شريح السليكون لتمنع انعكاس الضوء وبعدها يتم وضع شريحة زجاجية لحماية الخلية. وعمليا يتم دمج ما يقارب 36 خلية فوتوفولتيك على التوالي والتوازي لنحصل على مستوى فرق الجهد والتيار الكهربي المطلوب وتوضع هذه الخلايا في اطار من الزجاج لحمايته مع وضع نقطتي توصيل موجبة على السطح الامامي وسالبة على السطح الخلفي

الخميس، 5 سبتمبر 2013

الطاقة الشمسية

مقدمة :
إن القلق من تلوث هواء المدن ومن المطر الحمضي وتسرب النفط والمخاطر النووية وارتفاع حرارة الأرض يحث على إعادة تفحص بدائل الفحم والنفط والطاقة النووية ، وعلى الرغم من أن مصادر الطاقة البديلة ليست خالية من التلويث عموماً ، فإنه يوجد مجال واسع من الخيارات التي يكون ضررها البيئي أقل بكثير من مصادر الطاقة التقليدية .
إن أفضل التقنيات الواعدة هي التي تسخر طاقة الشمس حيث يعتبر التحويل الحراري المباشر للإشعاعات الشمسية إلي طاقة كهربائية عبر الخلايا الشمسية تقنية جديدة ومتطورة وهو صناعة إستراتيجية باعتبارها مصدراً طاقوياً مستقبلياً سيكون له الأثر الأكبر في المحافظة على مصادر الطاقة التقليدية ولأغراض أهم واستغلال أثمن علاوة على أن مصدر طاقته مجاني ولا ينضب ونظيف ودون مخلفات أو أخطار .
تعريف الخلايا الشمسية :
إن الخلايا الشمسية هي عبارة عن محولات فولتضوئية تقوم بتحويل ضوء الشمس المباشر إلي كهرباء ، وهي نبائظ شبه موصلة وحساسة ضوئياً ومحاطة بغلاف أمامي وخلفي موصل للكهرباء .
لــقد تم إنــماء تقنيات كثيرة لإنـتــاج الخلايـا الشمسيـــة عبر عــــمــليات متسلسلة من المعالجات الكيميائية والفيزيائية والكهربــائيـــة عـــلى شكــل متكاثف ذاتي الآليــــة أو عالي الآلية ، كمـــا تـم إنماء مــــواد مختلفـــة من أشبــاه الموصلات لتصنيع الخلايـــا الشمسية على هيئة عناصر كعنصر السيليكون أو على هيئة مركبات كمركب الجاليوم زرنيخ وكربيد الكادميوم وفوسفيد الأنديوم وكبريتيد النحاس وغيرها من المواد الواعدة لصناعة الفولتضوئيات .
ميكانيكية تيار الخلايا الشمسية :
الخلية الشمسية للتطبيقات الأرضية هي رقاقة رفيعة من السيليكون مشابة بمقادير صغيرة من الشوائب لإعطاء جانب واحد شحنة موجبة والجانب الآخر شحنة سالبة مكونة ثنائياً ذا مساحة كبيرة .
تولد الخلايا الشمسية قدرة كهربائية عندما تتعرض لضوء الشمس حيث الضوئيات ( الفوتونات ) والتي يحمل كل منها كماً طاقوياً محدداً يكسب الإلكترونات الحرة طاقة تجعلها تهتز حرارياً وتكسر الرابط الذري بالشبكة بالمادة الشبه موصلة ويتم تحرير الشحنات وإنتاج أزواج من الإلكترون في الفراغ . تنطلق بعد ذلك حاملات الشحنة هذه متجهة نحو وصلة الثنائي متنقلة بين نطاقي التوصيل والتكافؤ عبر الفجوة الطاقوية وتتجمع عند السطح الأمامي والخلفي للخلية محدثة سريان تيار كهربي مستمر عند توصيل الخلية بمحمل كهربي وتبلغ القدرة الكهربية المنتجة للخلية الشمسية عادة واحد وات.
أنواع الخلايا الشمسية التجارية :
تم تصنيع خلايا شمسية من مواد مختلفة إلا أن أغلب هذه المواد نادرة الوجود بالطبيعة أولها خواص سامة ملوثة للبيئة أو معقدة التصنيع وباهظة التكاليف وبعضها لا يزال تحت الدراسة والبحث وعليه فقد تركز الاهتمام على تصنيع الخلايا الشمسية السيليكونية وذلك لتوفير عنصر السيليكون في الطبيعة علاوة على أن العلماء والباحثين تمكنوا من دراسة هذا العنصر دراسة مستفيضة وتعرفوا على خواصه المختلفة وملاءمته لصناعة الخلايا الشمسية المتبلرة ومتصدعة التبلر .
1- الخلايا الشمسية السيليكونية المتبلرة :
تصنع هذه الخلايا من السيليكون عبر إنماء قضبان من السيليكون أحادي أو عديد التبلر ثم يؤرب إلي رقائق و تعالج كيميائياً وفيزيائياً عبر مراحل مختلفة لتصل إلي خلايا شمسية .
كفاءة هذه الخلايا عالية تتراوح بين 9 – 17 % والخلايا السيليكونية أحادية التبلر غالية الثمن حيث صعوبة التقنية واستهلاك الطاقة بينما الخلايا السيليكونية عديدة التبلر تعتبر أقل تكلفة من أحادية التبلر وأقل كفاءة أيضاً .
2- الخلايا الشمسية السيليكونية الأمورفية ( متصدعة التبلر ) :
مادة هذه الخلايا ذات شكل سيليكوني حيث التكوين البلوري متصدع لوجود عنصر الهيدروجين أو عناصر أخرى أدخلت قصداً لتكسبها خواص كهربية مميزة وخلايا السيليكون الأمورفي زهيدة التكلفة عن خلايا السيليكون البلوري حيث ترسب طبقة شريطية رقيقة باستعمال كميات صغيرة من المواد الخام المستخدمة في عمليات قليلة مقارنة بعمليات التصنيع البلوري . ويعتبر تصنيع خلايا السيليكون الامورفي أكثر تطويعاً وملاءمة للتصنيع المستمر ذاتي الآلية .
تتراوح كفاءة خلايا هذه المادة ما بين 4 – 9 % بالنسبة للمساحة السطحية الكبيرة وتزيد عن ذلك بقليل بالنسبة للمساحة السطحية الصغيرة وإن كان يتأثر استقرارها بالإشعاع الشمسي .
والشكل (1- أ) يوضح نسبة إنتاجية العالم من المسطحات ذات الخلايا الشمسية أحادية التبلر ، عديد التبلر . والشكل (2- ب) يوضح نماذج من الخلايا الشمسية والمنتجات الملحقة بها .
تطبيقات الخلايا الشمسية :
تركز الاهتمام على إدخال الفولتضوئيات كمصدر للطاقة المتجددة في التطبيقات الأرضية بغية تطوير التقنية ووسائل الاستخدام في قطاع السكن والصحة والتعليم والصناعة والزراعة والنفط وغيرها في الاستخدامات
الفولتضوئيات الجذابة اقتصادياً وفي المناطق المعزولة والنائية حيث تنقص تكلفة شبكات الكهرباء العامة وتساعد في الإنماء الاقتصادي والتطوير الاجتماعي المحلي .
والمسطحات الفولتضوئية هي مصدر القدرة الكهربية لهذه التطبيقات ، حيث يتكون المسطح من عدة خلايا (متصلة معاً بصفائح سلكية معدنية ) مغطاة بملف من البلاستيك الحراري مثل أسيتات فينيل إيثيل أو غيره وآخر من التدلار لحمايتها من الأشعة فوق البنفسجية ومغلقة بصفيحة زجاجية من الأمام وطبقة واقية تعمل كقاعدة إنشائية من الزجاج أو من الألياف الزجاجية أو الخزف الصيني عند الخلف مركب عليها صندوق وصلة كهربائية ومحاط بإطار معدني .
وهذه المسطحات يعوّل عليها بتطرف كمصدر طاقة كهربائية لأن ليس لها أجزاء متحركة وذات عمر طويل يتراوح من 15 إلي 35 سنة و أمان للبيئة ، كما تضفي على المباني شكلاً معمارياً جميلاً والشكل (2) يوضح الإنتاج الإقليمي للمسطحات ويوضح الشكل (3) الإنتاج العالمي للمسطحات .


ويمكن تصنيف وتحديد التطبيقات الأرضية وفق القدرة الكهربائية علي النحو التالي :-
* تطبيقات ذات قدرة منخفضة :
وتشمل الأجهزة والمنظومات التالية :
- الحاسبات والألعاب الإلكترونية والساعات .
- أجهزة الإذاعة المسموعة وشاحنات وسائط القدرة المنخفضة .
* تطبيقات ذات قدرة متوسطة :
وتشمل المنظومات التالية :
الإنارة – أجهزة الإذاعة المرئية – ثلاجات اللقاح والأمصال – إشارات المرور والإنذار – مراوح الأسقف ( التهوية ) – هواتف الطوارئ – شاحنات السياج الكهربي .
حيث يشحن السياج المحاط بالمزارع وأماكن تربية الحيوانات لمنعها من الاقتراب منها .
* تطبيقات ذات قدرة متوسطة وعالية :
ضخ المياه – محطات اتصالات الموجات السنتيمترية – محطات الأقمار الصنـــــاعية الأرضية – الوقاية المهبطية لحماية أنابيب النفط والغاز والمنشآت المعدنية من التآكل – تغذية شبكة الكهرباء العامة .
كلفة كهرباء الخلايا الشمسية :
تتراوح تكلفة الوات ذروة في الأسواق العالمية ما بين 8 إلي 10 دولارات بـــالنسبة للــدول المستوردة بينما تصل تكلفة الوات ذروة بالنسبة للتطبيقات ذات القدرة المتوسطة والقدرة المتوسطة و العالية إلي 30 دولار و تزيد هذه التكلفة وفق التصميم و أجهزة التحكم والتخزين الساكن و الإلكترونـات المساعدة إلا أن تكلفة الـوات ذروة بالنسبة للقدرة العاليــة (المحطات الكهـروشمسية ذات سعة الميجاوات) تقل قليلاً عن 20 دولار .
إن الاقتصاديات الحالية لتطبيقات ومنظومات الخلايا الشمسية وبعضها فعال التكلفة وبعضها الآخر غير ذلك وهي صورة ديناميكية تماماً حيث الأسعار و انخفضت خلال العقد الماضي والشكل (4) يوضح
دليل تكلفة الوات ذروة بالنسبة للدول المصنعة .


الشركات العالمية المصنعة للخلايا الشمسية :
الشركات العالمية العاملة في هذا المجال كثيرة من بينها شركة سولار الألمانية – الفواتوات الفرنسية – اتيار سولار في إيطاليا – كرونار في يوغسلافيا – استروبور في كندا – وهيليودينايكا في البرازيل .
وشركات عديدة في الولايات المتحدة واليابان وهناك شركات متعددة الجنسيات أيضاً .
والجدول (1) يوضح توزيع عدد بعض الشركات المصنعة .

الاستثمارات العالمية في مجال الطاقة الشمسية :
تستثمر الدول المصنعة أموالاً طائلة في مجال الخلايا الشمسية وذلك على مستوى البحث والتطوير والتطبيق بغية الوصول إلي تخفيض أسعارها وزيادة كفاءتها وتسهيل طرق إنتاجها وجعلها واعدة للإنتاج والتطبيق الموسع والجدول رقم (2) يوضح استثمارات بعض الدول في مجال مشاريع الخلايا الشمسية .


كما تسعى هذه الدول الصناعية جادة من خلال مراكز البحث والتطوير إلي تخفيض تكلفة الوات ذروة إلي 0.5 أو 1 دولار مع سنة 2000 ولا غرابة في ذلك فقد كانت تكلفة الوات ذروة 300 – 350 دولار في الخمسينــات حين كـان هذا المجـال مقصوراً على أبحاث الفضاء .
وعليه فإن الأرقام المشار إليها في ميزانية الإنفاق ومبالغ الاستثمارات إنما تدل على ما توليه الدول المتقدمة من اهتمام بالغ لامتلاك الفولتضوئيات لها خاصة وأن المصادر التقليدية آخذة في النضوب بالإضافة إلي ضمان استحواذها على الأسواق العالمية لمنتجات الفولتضوئيات .
استثمارات الطاقة الشمسية في الوطن العربي :
يدرك العاملون في مجال الطاقة أن الأراضي العربية هي من أغنى مناطق العالم بالطاقة الشمسية ويتبين ذلك بالمقارنة مع بعض دول العالم الأخرى ولو أخذنا متوسط ما يصل الأرض العربية من طاقة شمسية وهو 5 كيلو واط – ساعة / متر مربع / اليوم و افترضنا أن الخلايا الشمسية بمعامل تحويل 5 % وقمنا بوضع هذه الخلايا الشمسية على مساحة 16000 كيلو متر مربع في صحراء العراق الغربية ( وهذه المساحة تعادل تقريباً مساحة الكويت ) و أصبح بإمكاننا توليد طاقة كهربائية تساوي 10× 400 ميجا واط – ساعة في اليوم ، أي ما يزيد عن خمسة أضعاف ما نحتاجه اليوم وفي حالة فترة الاستهلاك القصوى .
ومن البديهي أيضاً أن طاقتنا النفطية ستنضب بعد مائة عام على الأكثر وهو أحسن المصادر للطاقة وذلك لعدم وجود كميات كبيرة من مادة اليورانيوم في بلداننا العربية بالإضافة إلي تكلفة أجهزة الطاقة وتقدم تكنولوجيتها خلال السنوات الخمسين الماضية و إمكانية عدم اللحاق بها وهو ما جعلنا مقصرين في استثمارها و نأمل أن لا تفوتنا الفرصة في خلق تكنولوجيات عربية لاستغلال الطاقة الشمسية وهي لا زالت في بداية تطورها .
إن لاستعمال بدائل الطاقة مردودين مهمين أولهما جعل فترة استعمال الطاقة النفطية طويلة وثانيهما تطوير مصدر للطاقة آخر بجانب مصدر النفط الحالي .
ومن التجـارب المحدودة لاستخدامات الطاقة الشمسية في البلاد العربية ما يلي :
1- تسخين المياه والتدفئة وتسخين برك السباحة بواسطة الطاقة الشمسية أصبحت طريقة اقتصادية في البلدان العربية وخاصة في حالة تصنيع السخانات الشمسية محلياً .
2- تعتبر الطاقة الشمسية أحسن وسيلة للتبريد حيث أنه كلما زاد الإشعاع الشمسي كلما حصلنا على التبريد وكلما كانت أجهزة التبريد الشمسي أكثر كفاءة ، ولكن تكلفة التبريد الشمسي تكون أعلى من السعر الحالي للتبريد بثلاثة إلي خمس أضعاف تكلفته الاعتيادية ويعود السبب لارتفاع التكلفة لمواد التبريد الشمسي ومعدات تجميع الحرارة وتوليد الكهرباء .
ولو استعرضنا البحث والتطبيقات السارية للطاقة الشمسية في الوطن العربي لتبين لنا أن استخدام السخانات الشمسية أصبح شيئاً مألوفاً في بعض البلدان العربية بينما بقيت صناعة الخلايا بصورة تجارية متأخرة في جميع البلدان العربية بسبب تكلفة إنشاء المصنع الأولية و إتباع سياسة التأمل القائلة ( يجب الانتظار ريثما تنخفض الكلفة ) .
إن معظم التجارب الميدانية والمختبرية لاستغلال الطاقة الشمسية في الوطن العربي لا تزال في مراحلها الأولى ويجب تنشيطها و الإكثار منها و لو استعرضنا ما تقوم به دول العالم في هذا المجال و بخاصة الدول المتقدمة صناعياً والتي لا تملك خمس ما تملكه الدول العربية من الطاقة الشمسية لوجدنا أن بريطانيا وحدها تنفق على مشاريع الطاقة الشمسية ما يعادل جميع ما تنفقه الدول العربية مجتمعة وينطبق هذا على عدد العاملين في مجالات الطاقة المتجددة حيث يعمل في فرنسا ضعف اللذين يعملون في جميع الدول العربية في هذه المجالات .
اقتصاديات الطاقة الشمسية :
تعتبر تكلفة المواد الأولية لأجهزة استخدام الطاقة الشمسية أهم عائق يحول دون استخدامها بالإضافة إلي المساحة الكبيرة المطلوبة لوضع هذه الأجهزة المجمعة لأشعة الشمس غير المركزة و بالرغم من كل هذه العوامل فهناك بعض الاستخدامات للطاقة الشمسية تعتبر اقتصادية في الوقت الحاضر ، منها تسخين المياه والاستعمالات الأخرى في المناطق النائية مثل توليد الكهرباء وضخ المياه وتحلية المياه والإشارات الضوئية والبث اللاسلكي والحماية الكاثودية وغيرها .
ومن الضروري قبل احتساب تكلفة واقتصاديات الطاقة الشمسية أن نعلم نوع التطبيق الشمسي بالإضافة إلي مواصفات المكان أي هل منطقة نائية أو قرب مدينة أو في داخل المدينة ؟ ويجب معرفة فترة التشغيل اليومية وهل هناك حاجة إلي تخزين الطاقة أم لا ؟ وهل هناك حاجة إلي الصيانة ومدى تكرارها ؟ .
ومن المعلوم بأن معظم البلدان العربية تدعم أسعار الكهرباء المولدة بالمشتقات النفطية لمواطنيها ولا بد من أخذ هذا الدعم في الاعتبار عند مقارنة تكلفة توليد الكهرباء باستخدام الطاقة الشمسية .
و إذا أخذت جميع هذه العوامل في الحسبان و اتبعت الطرق الصحيحة لاستغلال و استخدام هذا النوع من الطاقة بشكل اقتصادي ومحاولة تطويرها إلي الشكل الأفضل قد يؤدي إلي انخفاض تكلفة الوات الواحد المنتج منها .
بعض مشاكل استخدام الطاقة الشمسية :
إن أهم مشكلة تواجه الباحثين في مجالات استخدام الطاقة الشمسية هي وجود الغبار ومحاولة تنظيف أجهزة الطاقة الشمسية منه وقد برهنت البحوث الجارية حول هذا الموضوع أن أكثر من 50 % من فعالية الطاقة الشمسية تفقد في حالة عدم تنظيف الجهاز المستقبل لأشعة الشمس لمدة شهر .
إن أفضل طريقة للتخلص من الغبار هي استخدام طرق التنظيف المستمر أي على فترات لا تتجاوز ثلاثة أيام لكل فترة وتختلف هذه الطرق من بلد إلي آخر معتمدة على طبيعة الغبار وطبيعة الطقس في ذلك البلد .
أما المشكلة الثانية فهي خزن الطاقة الشمسية والاستفادة منها أثناء الليل أو الأيام الغائمة أو الأيام المغبرة ويعتمد خزن الطاقة الشمسية على طبيعة وكمية الطاقة الشمسية ، و نوع الاستخدام وفترة الاستخدام بالإضافة إلي التكلفة الإجمالية لطريقة التخزين ويفضل عدم استعمال أجهزة للخزن لتقليل التكلفة والاستفادة بدلاً من ذلك من الطاقة الشمسية مباشرة حين وجودها فقط ويعتبر موضوع تخزين الطاقة الشمسية من المواضيع التي تحتاج إلي بحث علمي أكثر واكتشافات جديدة .
ويعتبر تخزين الحرارة بواسطة الماء والصخور أفضل الطرق الموجودة في الوقت الحاضر . أما بالنسبة لتخزين الطاقة الكهربائية فما زالت الطريقة الشائعة هي استخدام البطاريات السائلة ( بطاريات الحامض والرصاص ) وتوجد حالياً أكثر من عشر طرق لتخزين الطاقة الشمسية كصهر المعادن والتحويل الطوري للمادة وطرق المزج الثنائي و غيرها .
والمشكـلة الثـالثة في استخدامات الطاقة الشمسية هي حدوث التـآكل في المجمعـات الشمسيــة بسبب الأمـلاح الموجودة في الميــاه المستخدمــة في دورات التسخــين وتعتبر الــدورات المغلقـة واستخـــدام مــاء خـال من الأملاح فيها أحسن الحلول للحد من مشكلة التآكل والصدأ في المجمعات الشمسية .
المقترحات و التوصيات :
إن البحث والمثابرة في إيجاد بدائل للطاقة الأحفورية ما هو إلا جزء مكمل لاستمرارية دور الدول العربية كدول مصدرة للطاقة والحفاظ على المستوى الاقتصادي الذي تنعم به هذه الدول الآن ومن أجل مواكبة بقية دول العالم في هذا المجال ، يقترح مراعاة التوصيات التالية :
1- الدعم المادي والمعنوي وتنشيط حركة البحث في مجالات الطاقة الشمسية.
2- القيام بإنشاء بنك لمعلومات الإشعاع الشمسي ودرجات الحرارة وشدة الرياح وكمية الغبار وغيرها من المعلومات الدورية الضرورية لاستخدام الطاقة الشمسية .
3- القيام بمشاريع رائدة وكبيرة نوعاً ما وعلى مستوى يفيد البلد كمصدر آخر من الطاقة وتدريب الكوادر العربية عليها بالإضافة إلي عدم تكرارها بل تنويعها في البلدان العربية للاستفادة من جميع تطبيقات الطاقة الشمسية .
4- تنشيط طرق التبادل العلمي والمشورة العلمية بين البلدان العربية وذلك عن طريق عقد الندوات واللقاءات الدورية .
5- تحديث دراسات استخدامات الطاقة الشمسية في الوطن العربي وحصر وتقويم ما هو موجود منها .
6- تطبيق جميع سبل ترشيد الحفاظ على الطاقة ودراسة أفضل طرقها بالإضافة إلي دعم المواطنين اللذين يستعملون الطاقة الشمسية في منازلهم .
7- تشجـيع التعاون مع الـــدول المتقدمــة في هـذا المجال والاستفــادة من خبراتهــا على أن يكـون ذلك مبنيــاً على أســاس المســاواة والمنفعة المتبادلة .

مصادر الطاقة البديلة: الطاقة الشمسية

عندما نفكر في مصادر الطاقة المتجددة، فإن الشمس هى أول مصدر يتبادر إلى الأذهان. فضوء الشمس دافئ، وساطع، ومتاح بشكل دائم. لكن المشكلة هي: كيف نحصل على الطاقة من ضوء الشمس ونحولها إلى أشكال يستطيع الناس استخدامها، مثل الماء الساخن، أو البخار، أو الكهرباء.
فنحن نعرف منذ القرن السابع قبل الميلاد تقريبًا، أننا إذا ركزنا أشعة الشمس من خلال عدسة مكبرة، فإن ذلك من شأنه أن يتسبب في إشعال النار. ولقد استخدم كلٌ من اليونانيين، والرومان، والصينيين المرايا لتركيز وعكس ضوء الشمس على المشاعل في المناسبات الدينية. ولكن توليد الطاقة على مستوى أكبر يكون أكثر تعقيدًا.
الطاقة_الشمسية1
مصدر الصورة NREL,
تغطي ألواح الطاقة الشمسية جانبًا واحدًا من سقف هذا البيت الجديد.
ولقد عمل العلماء والمخترعون عليه على مدار 200 عام. ولكن في السبعينيات من القرن العشرين بدأت أسعار الوقود الحفري في الارتفاع. وفي هذا الوقت نفسه، كانت هناك مخاوف متزايدة بشأن تأثر المناخ بالتلوث الذي يسببه الوقود الحفري. ولزمن طويل كانت الطاقة الشمسية غير فعالة. وكانت أيضًا مكلفة من حيث تركيبها. ولم تصبح الطاقة الشمسية شائعة الاستخدام إلا بحلول الثمانينيات من القرن العشرين. وبالتدريج وببطء دخلت الطاقة الشمسية إلى جميع أنواع الاستخدامات اليومية. وأصبحت الوحدات الشمسية تمد كل شيء بالطاقة بدايةً من شبكات الطاقة الرئيسية في بعض المناطق إلى إنارة الشوارع، وحمامات السباحة، والآلات الحاسبة.
والطاقة الشمسية ليست مجرد نوع واحد من التكنولوجيا. ففي واقع الأمر هناك ثلاث طرق شائعة، وكل منها يتناسب تمامًا مع الاستخدامات الخاصة بها. وبعض هذه التقنيات قائم على مفاهيم تطورت منذ سنوات، وبعضها يعد تقنيات حديثة. فلنلق نظرة على كيفية تطور هذه التقنيات، وعلى ما هو متاح منها الآن.

التاريخ

لطالما انشغل العلماء بإمكانات الطاقة الشمسية على مر العصور. وكانت أولى محاولات استخدام التكنولوجيا لاستغلال طاقة الشمس في القرن التاسع عشر. ففي مطلع ستينيات القرن التاسع عشر، استطاع الفرنسي أوجست موشو أن يضع غلاية حديدية مملوءة بالماء تحت عدسة. وقام ضوء الشمس بتسخين الغلاية حتى وصل الماء الموجود بها إلى درجة الغليان. ووجد موشو أن إضافة عاكس من معدن مطلي قام بتركيز ضوء الشمس ورفع درجة حرارة الماء إلى درجة الغليان بسرعة أكبر. وأدى ذلك إلى زيادة كمية البخار الناتجة. وبإدخال تغييرات بسيطة على هذا النظام، استطاع أن يحصل على كمية بخار تكفي لإدارة محرك صغير. وكانت هذه الخطوة الأولى نحو المجمع الشمسي المعاصر.
الطاقة_الشمسية2
مصدر الصورة Perlin /Butti Solar Archives,
في أواخر الثمانينيات من القرن التاسع عشر، استطاع مساعد موشو، آبيل بيفر، أن يستخدم صحنًا شمسيًا ليدير آلة طباعة.
وفي أواخر السبعينيات من القرن التاسع عشر، قام ويليام آدامز، وهو موظف بريطاني في الهند، بتطوير أفكار موشو. فقام باستبدال العاكس المعدني اللامع بمجموعة من المرايا مرتبة بشكل شبه دائري حول الغلاية. وقامت هذه المجموعة من المرايا بتجميع وتركيز الضوء، على نحو رفع درجة حرارة الماء إلى الغليان بسرعة أكبر. ولا يزال تصميم آدامز مستخدمًا إلى الآن في صورة برج الطاقة. وقد ألف آدامز كذلك أول كتاب عن الطاقة الشمسية، أسماه: Solar Energy: A Substitute for Fuel in Tropical Countries
في بداية الثمانينيات من القرن التاسع عشر، قام المخترع الأمريكي تشارليز فريتس ببناء أول خلية شمسية مستخدمًا عنصر السلينيوم في ذلك. وقام هذا الجهاز بتحويل نسبة تقل عن 1% من الضوء إلى كهرباء، وهي نسبة غير فعالة وليست ذات نفع كبير.
وفي أواخر الثمانينيات من القرن التاسع عشر تمكن الفرنسي تشارلز تيلير من بناء مجمع شمسي مشابه إلى حد كبير للمجمّع الشمسي ذي اللوح المسطح المستخدم حاليًا. فقد وضع عشرة ألواح، كل لوح يتكون من لوحين من الحديد مثبتين معًا بإحكام. وقام بتوصيل هذه الألواح بأنابيب مملوءة بالنشادر. وكان اختيار تيلير للنشادر راجعًا إلى أنها تغلي أسرع من الماء. وبالفعل تسببت الحرارة الناتجة عن ضوء الشمس المنعكس على الألواح في تحويل النشادر إلى بخار النشادر. وأدار هذا البخار محرك مضخة مياه. بعد ذلك قام تيلير بتغليف الجزء العلوي من الجهاز بالزجاج وعزل الجزء السفلي منه ليزيد من الفاعلية. لكنه لم يتابع العمل على هذا المشروع أكثر من ذلك، بل اتجه لتطوير تكنولوجيا التبريد.
في عام 1891 سجل كلارينس كيمب من مدينة بالتيمور بولاية ميريلاند براءة اختراع أول سخان مياه شمسي تجاري. وبدأ ذلك السخان بجهاز يسمى الصندوق الساخن - وهو عبارة عن صندوق معزول مطلي باللون الأسود من الداخل وله غطاء زجاجي. ونظرًا لعلمه بأن الأوعية المعدنية تسخن ما بداخلها، وضع كيمب خزان ماء معدنيًا داخل الصندوق الساخن. وساعدت الخصائص المتمثلة في صندوق معدني مغلق مطلي باللون الأسود، على جعل الماء داخل الخزان يحتفظ بحرارة النهار لمدة أطول من الماء في خزان لا يتمتع بهذه الخصائص.
بعد حوالي عشر سنوات من التجارب على المحركات الشمسية، تمكن أوبري إنيس من ولاية بوسطن من تأسيس شركة محركات شمسية، وهي Solar Motor Co، في عام 1900. وفي عام 1904 أعلن عن الجهاز الخاص به. والعاكس العملاق، الذي اتسع قطره ليصل إلى 10 أمتار (33 قدمًا)، احتوى على 1788 مرآة عاكسة. واستوعبت هذه الغلاية 378.5 لترًا (100 جالون) من المياه وأنتج طاقة بخارية تقدر بـ 2.5 حصان. وباع إنيس ماكينتين. لكن للأسف، لم تستطع هذه المحركات الشمسية الصمود أمام العواصف: فالمحرك الأول دُمّر في عاصفة هوائية، والثاني دمرته عاصفة برد.
في عام 1912، قام المقاول الأمريكي فرانك شومان ببناء أول محطة طاقة شمسية ليدير مضخة ري في صحراء مصر خارج القاهرة. وقامت شركته للطاقة الشمسية ببناء صفوف متتالية من أحواض التجميع على شكل قطع مكافئ مهمتها تركيز الطاقة الشمسية على أنابيب مملوءة بالماء ومغلفة بالزجاج. وفي ذلك النظام الذي يشبه محطات الطاقة الشمسية الحديثة على نحو مذهل، تحولت المياه في الأنابيب إلى بخار، وذلك البخار أدار مضخة مياه. ونجحت محطة شومان أثناء فترة الاختبارات، ولكن قبل بدء التشغيل الفعلي، اندلعت الحرب العالمية الأولى. ودُمّرت المحطة أثناء المعارك التي دارت في شمال إفريقيا.
الطاقة_الشمسية5
مصدر الصورة Perlin /Butti Solar Archives,
قام المهندس الأمريكي فرانك شومان ببناء المُجمّعات ذات القطع المكافئ في مصر عام 1912.
وبعد الحرب العالمية الثانية، تراجع الاهتمام بالطاقة الشمسية. فقد كان الوقود الحفري متاحًا وغير مكلف. وتوقفت التنمية التجارية لتقنيات الطاقة الشمسية. ومع ذلك، استمرت الأبحاث على الطاقة الشمسية. فالأنظمة المُستخدمة الآن، أو تلك التي تحت التطوير، قائمة على أعمال هؤلاء الرواد الأوائل وإنجازاتهم في مجال الطاقة الشمسية.

المجمعات الشمسية المركزة

تستخدم المجمعات الشمسية المركزة المرايا لتجميع وتركيز ضوء الشمس لتوليد كميات كبيرة من الكهرباء. فيقوم ضوء الشمس المُجمّع بتسخين الماء أو بعض السوائل الأخرى لإنتاج البخار. ويقوم البخار بتدوير مولد يقوم بدوره بإنتاج الكهرباء. وتتنوع كميات الطاقة التي تنتجها أنظمة المجمّع الشمسي. فالأنظمة الأصغر بإمكانها إنارة قرية ريفية كاملة. أما الأنظمة الأكبر، فيمكنها إمداد محطة طاقة أساسية في إقليم ما بالكهرباء.
solar4_AR
مصدر الصورة NREL,
مخطط حوض على شكل قطع مكافئ.
الطاقة_الشمسية7
مصدر الصورة DOE.
نظام حوض على شكل قطع مكافئ قائم على الأرض.
هناك ثلاثة أنواع للمجمّعات الشمسية. وتستخدم محطات الطاقة الشمسية الكبيرة أحواضًا ذات قطع مكافئ طويلة لجمع وتركيز ضوء الشمس وتحويله إلى طاقة. وتنتظم الأحواض على محور شمالي - جنوبي لتتبع حركة الشمس. ويوجد في مركز الحوض أنبوبة ممتلئة بسائل ناقل للحرارة، غالبًا ما يكون زيتًا. ويقوم الحوض الانعكاسي هذا بتركيز حرارة الشمس على الأنبوبة. ومن ثم يقوم السائل الساخن بتسخين الماء ليتحول إلى بخار. وهذا البخار يقوم بتدوير مولد بخاري. ويتم ترتيب الأحواض في صفوف متوازية لتكون مجالا تجميعيًا. وبعض المحطات يكون لديها قدرات تخزينية لحفظ الطاقة الحرارية ليتم استخدامها أثناء الليل. وتقوم أنظمة الأحواض الكبيرة بتوليد طاقة تصل إلى 80 ميجاوات. وهذا يُعد كافيًا لتشغيل محطة طاقة أساسية لمنطقة كاملة!
أما نظام محرك الصحن المضغوط، فإنه يستخدم مجموعة من المرايا مرتبة على شكل صحن. ويتحرك هذا الصحن مع حركة الشمس، فيجمع ويركز الطاقة الشمسية. وتقوم المرايا بتركيز تلك الطاقة على مستقبل. ويقع ذلك المستقبل في النقطة البؤرية للصحن، ويحتوي على وسيط ناقل للحرارة - إما أنابيب مملوءة بالهيدروجين أو غاز الهيليوم أو مملوءة بسائل يغلي حتى يتحول إلى غاز ثم يتكثف - لنقل الحرارة إلى محرك صغير، غالبًا يسمى محرك ستيرلينج. وذلك المحرك مركب أيضًا في النقطة البؤرية، ويقوم بإنتاج طاقة ميكانيكية لتدوير مولد وإنتاج الكهرباء. ويعمل نظام محرك الصحن بكفاءة تصل إلى حوالي 30%، وهو أكثر المجمعات الشمسية كفاءة.
solar6_AR
مصدر الصورة وزارة الطاقة الأمريكية (DOE).
رسم تخطيطي لنظام محرك الصحن.
الطاقة_الشمسية9
مصدر الصورة مختبرات سانديا الوطنية
نظام محرك صحن شمسي قائم على الأرض.
يرتكز برج الطاقة الشمسية الطويل في منتصف المرايا المرتبة لتتبع الشمس وتركز ضوءها على مستقبل في أعلى ذلك البرج. وتكوّن المرايا التي تسمي هيليوستات ترتيبًا دائريًا متحركًا حول البرج. ويقوم سائل النقل الحراري داخل المستقبل بتوليد البخار لتدوير مولد. وفي أبراج الطاقة المستخدمة في وقت سابق، كان سائل النقل الحراري هو البخار. والآن حلت أملاح النترات الذائبة محل البخار، وذلك لأنها أفضل في نقل الحرارة وتخزينها للاستخدام في وقت لاحق. ويمكن لمحطات برج الطاقة أن تنتج مقدار طاقة يتراوح ما بين 50 و 200 ميجاوات. ويخضع استخدام برج الطاقة للتجربة في جنوب إفريقيا، وفي أجزاء أخرى من العالم أيضا.
solar8_AR
مصدر الصورة Energy Information Administration.
يستخدم برج الطاقة الشمسية مرايا على الأرض تركز ضوء الشمس على المستقبل في أعلى ذلك البرج.
الطاقة_الشمسية11
مصدر الصورة DOE.
استخدام برج طاقة شمسية تجريبي.

الأنظمة الشمسية الفولتية الضوئية

تستخدم أنظمة الطاقة الشمسية الفولتية الضوئية (PV) أشباه الموصلات - نفس المواد التي تستخدم في تصنيع رقائق الكمبيوتر الإلكترونية - في توليد الكهرباء من ضوء الشمس. وتعد الخلية الفولتية الضوئية هي الأساس للنظام الفولتي الضوئي. وتتكون هذه الخلية من رقاقتين متلاصقتين من أشباه الموصلات، تحتويان على المواد الكيماوية اللازمة لتوليد مجال كهربائي. وعندما يقع ضوء الشمس على سطح الخلية الفولتية الضوئية، يحرك المجال الكهربائي الإلكترونات في اتجاه محدد. ويؤدي ذلك إلى توليد تيار كهربائي. وتنتج كل خلية وات أو اثنين فقط. لكن يمكن أن توضع الخلايا مع بعضها البعض في وحدات للحصول على مزيد من الطاقة؛ وللاستخدامات الأكبر، يمكن الربط بين الوحدات في صورة مجموعات مرتبة. ويمكن لكل مجموعة أن تحتوي على وحدة أو وحدتين، بناءً على كم الطاقة المطلوبة. وتعمل الأنظمة الفولتية الضوئية بكفاءة 10%، ومن المنتظر أن تزيد الأبحاث التي تجرى الآن من هذه الكفاءة لتصل إلى 20%.

solar10_AR
مصدر الصورة Florida Solar Energy Center.
رسم تخطيطي للخلية الفولتية الضوئية.
تم تطوير الخلية الفولتية الضوئية في عام 1953. وبعد خمس سنوات من الأبحاث والتطوير، تم استخدام الخلايا الفولتية الضوئية المصنعة من السيليكون والمقاومة للإشعاع في الأقمار الصناعية. وكان القمر الصناعي الأمريكي فانجارد 1، الذي أطلق في 17 مارس، 1958، يعمل بطاقة فولتية ضوئية. ومعظم الكهرباء المستخدمة في الفضاء الآن مصدرها هو الخلايا الفولتية الضوئية. أما على الأرض، فإنه يشيع استخدام طاقة الخلايا الفولتية الضوئية في الآلات الحاسبة التي تعمل بالطاقة الشمسية، وفي إنارة الشوارع، وفي العلامات الإرشادية في الطرق. ولكن يمكن تصميم الأنظمة الفولتية الضوئية بأي حجم، بناءً على كم الكهرباء المطلوبة. ويجري تطوير منتجات مثل الأسقف الفولتية الضوئية المستخدمة في دعم الطاقة التقليدية. ويعمل العديد من الأنظمة الفولتية الضوئية بالمرافق المحلية أو نظام البطارية، وذلك لضمان الطاقة الاحتياطية أثناء الليل أو في الأيام الغائمة.

الأنظمة الشمسية الحرارية


تقوم الأنظمة الشمسية الحرارية بتسخين الماء في حمامات السباحة، أو المنازل، أو المكاتب. وهناك نوعان من المجمعات: المجمعات ذات اللوح المسطح والمجمعات ذات الأنبوب المفرغ.


أما المجمعات ذات اللوح المسطح، فإنها تناسب الاستخدامات المنزلية البسيطة، مثل تسخين الماء أو تدفئة الهواء. ويتكون الجهاز من صندوق معدني معزول يحتوي على لوح ماص مصنوع من النحاس أو الألومونيوم ومطلي بلون داكن. واللون الداكن للوح الماص هو عبارة عن طلاء خاص يمتص الحرارة ويحتفظ بها على نحو أفضل من المعدن غير المطلي أو المطلي باللون الأسود المعتاد. ويغطي الصندوق غطاء من الزجاج أو البلاستيك المصقول. ويسقط ضوء الشمس على المجمع ذو اللوح المسطح ويقوم بتسخين اللوح الماص.

solar12_AR
مصدر الصورة (أدناه وأسفل اليسار) DOE.
وتستخدم المجمعات ذات اللوح المسطح لتسخين الماء في المنازل أو في تركيب أجهزة التدفئة الهيدرونية.


solar11_AR
مصدر الصورة The Solarserver,
رسم توضيحي للمجمع الشمسي ذي اللوح المسطح.
يعتمد اختيار الوسيط المستخدم بين الغطاء المصقول واللوح الماص على ما إذا كان المجمع ذو اللوح المسطح سائلاً أو مجمع ذو لوح مسطح هوائي. ويحتوي المجمع ذو اللوح المسطح السائل، والذي يستخدم في تسخين الماء، على حامل من الأنابيب يستقر على اللوح الماص. وتحتوي الأنابيب على ماء تم تسخينه بواسطة اللوح الماص. ويمكن استخدام الماء المسخن هذا في المنازل أو حمامات السباحة. والمجمعات ذات اللوح المسطح المستخدمة في حمامات السباحة الخارجية عادةً تكون غير مغطاة لتقليل النفقات. وذلك لأن ماء حمامات السباحة يتطلب أن يكون أكثر دفئا من درجة حرارة الهواء المحيط به بمقدار طفيف؛ أما حمامات السباحة الداخلية والمنتجعات الصحية، فإنها تستخدم مجمعات مغطاة وهى ذات تكلفة أعلى. أما المجمعات ذات اللوح المسطح الهوائية، فإنها تحتوي على لوائح من المعدن أو تلتصق بالألواح الماصة، لتسخين الهواء في المجمع. وهذه المجمعات تستخدم في تدفئة الهواء، وهي عادة أقل كفاءة من المجمعات ذات اللوح المسطح السائلة. وتقوم المجمعات ذات اللوح المسطح بتسخين السائل أو الهواء لدرجة حرارة أقل من 180 فهرنهايت (82.2 سيليزيوس). وهذه المجمعات يتم إعدادها في مجموعات، لذا فإن حجم النظام يعتمد على كمية الماء الساخن المطلوبة، سواء لحمام سباحة، أو لمنزل، أو لمبنى مكتبي.

solar16_AR
مصدر الصورة DOE.
تُستخدم المجمعات ذات اللوح المسطح الهوائية في تدفئة الهواء.


تستطيع المجمعات ذات الأنبوب المفرغ أن تسخن الهواء لدرجة حرارة تتراوح بين 77 إلى 177 درجة مئوية (170 إلى 350 درجة فهرينهايت). وهذا يعني أنها تنتج طاقة أكبر من المجمع ذي اللوح المسطح القياسي. وتتكون الأنظمة ذات الأنبوب المفرغ من صفين متوازيين من الأنابيب الزجاجية. وتحتوي كل أنبوبة زجاجية على أنبوبة أخرى بداخلها. وهذه الأنبوبة الداخلية هى الأنبوبة الماصة، وتكون مصنوعة من معدن مطلي بدهان ماص للحرارة. ويتحول ضوء الشمس إلى طاقة حرارية، يتم نقلها إما مباشرة للماء المخزن أو إلى السائل الذي يقوم بتسخين الماء. والمجمعات ذات الأنبوب المفرغ تستخدم في تدوير تطبيقات التبريد وأيضًا في التطبيقات الصناعية أو التجارية.
والميزة الفريدة التي يتمتع بها النظام ذو الأنبوب المفرغ هي أن المساحة بين الأنبوبتين عبارة عن فراغ من الهواء. وهذا الفراغ يعطي نوعًا من العزل، مما يحافظ على الحرارة الشمسية المجمعة داخل الأنابيب لمدة أطول. وهذا يعني أن الأنابيب تفقد أقل مقدار فقط من الحرارة للبيئة المحيطة. وهذا النوع من النظام يمكن استخدامه في المناخ البارد أو المناطق ذات الجو الغائم.

solar17_AR
مصدر الصورة (أعلاه وأعلى اليسار) DOE.
كما أن المجمعات ذات الأنبوب المفرغ تعمل بكفاءة في درجات الحرارة العالية.
solar18_AR
الطاقة_الشمسية19
مصدر الصورة Sol Heat Ltd,
نظام تسخين شمسي ذو أنبوب مفرغ مركب على سطح.

كما هو الحال في الأنظمة الفولتية الضوئية، تكون حرارة الزيت أو الغاز الطبيعي هي مصدر الطاقة الاحتياطي للأنظمة الشمسية الحرارية، للحفاظ على مستوى سخونة الماء المطلوب.

قضايا

إن أكبر عقبة تقف في طريق الطاقة الشمسية منذ سنوات هي تكلفة التركيب؛ وهذا صحيح حتى الآن. فمعدات الطاقة الشمسية تكلف أكثر من معدات الطاقة التقليدية. ويستغرق الأمر سنوات كثيرة لجني نتائج هذا الاستثمار. فمثلاً، يزيد ثمن النظام ذي الأنبوب المفرغ مرتين عن ثمن المجمع ذي اللوح المسطح. وبالإضافة إلى ذلك، فإن عمر الأنظمة عشرون عاما تقريبا. وفي الولايات المتحدة، قد تقدم كل ولاية خصومات للأشخاص الذين يتحولون لاستخدام أي من منتجات التسخين باستخدام الطاقة الشمسية.


خطط مستقبلية

لا تزال الإضاءة الشمسية الهجينة تحت التطوير. وهذه التكنولوجيا تستخدم مجمعات مركبة على السطح لنقل الطاقة مباشرة إلى كابلات من الألياف البصرية، والتي يتم توصيلها بتركيبات ضوء خاصة مركبة في الحجرة. وتنتج هذه التركيبات الخاصة بعد ذلك الضوء. هذا النظام يتم توصيله بنظام كهربائي تحسبًا للأيام الغائمة. وهو يوفر الكهرباء، خاصة في الأوقات التي يزيد فيها استخدم الطاقة.

الطاقة الشمسية واستخدماتها

خلق الله الشمس والقمر كآيات دالة على كمال قدرته وعظم سلطانه وجعل شعاع الشمس مصدراً للضياء على الأرض وجعل الشعاع المعكوس من سطح القمر نوراً . قال الله تعالى في كتابه العزيز ( هو الذي جعل الشمس ضياء والقمر نوراً وقدره منازل لتعلموا عدد السنين والحساب ما خلق الله ذلك إلا بالحق يفصل الآيات لقوم يعلمون ) سورة يونس الآية(5) فالشمس تجري في الفضاء الخارجي بحساب دقيق حيث يقول الله سبحانه وتعالى في سورة الرحمن ( الشمس والقمر بحسبان ) الآية(5) . أي أن مدار الأرض حول الشمس محدد وبشكل دقيق ، وآي اختلاف في مسار الأرض سيؤدي إلى تغيرات مفاجئة في درجة حرارتها وبنيتها وغلافها الجوي ، وقد تحدث كوارث إلى حد لآيكن عندها بقاء الحياة فقدرة الله تعالى وحدها جعلت الشمس الحارقة رحمة ودفئاً ومصدراً للطاقة حيث تبلغ درجة حرارة مركزها حوالي (8ْ-40ْ) x 10 درجة مطلقة ( كفن ) ثم تتدرج درجة حرارتها في الانخفاض حتى تصل عند السطح إلى 5762ْ مطلقة ( كفن ( .

استخدام الطاقة الشمسية 

استفاد الإنسان منذ القدم من طاقة الإشعاع الشمسي مباشرة في تطبيقات عديدة كتجفيف المحاصيل الزراعية وتدفئة المنازل كما استخدمها في مجالات أخرى وردت في كتب العلوم التاريخية فقد أحرق أرخميدس الأسطول الحربي الرماني في حرب عام 212 ق م عن طريق تركيز الإشعاع الشمسي على سفن الأعداء بواسطة المئات من الدروع المعدنية . وفي العصر البابلي كانت نساء الكهنة يستعملن آية ذهبية مصقولة كا لماريا لتركيز الإشعاع الشمسي للحصول على النار . كما قام علماء أمثال تشرنهوس سويز ولافوازييه وموتشوت وأريكسون وهاردنج وغيرهم باستخدام الطاقة الشمسية في صهر المواد وطهي الطعام وتوليد بخار الماء وتقطير الماء وتسخين الهواء . كما أنشئت في مطلع القرن الميلادي الحالي أول محطة عالمية للري بوساطة الطاقة الشمسية كانت تعمل لمدة خمس ساعات في اليوم وذلك في المعادي قرب القاهرة . لقد حاول الإنسان منذ فترة بعيدة الاستفادة من الطاقة الشمسية واستغلالها ولكن بقدر قليل ومحدود ومع التطور الكبير في التقنية والتقدم العلمي الذي وصل إليه الإنسان فتحت آفاقا علمية جديدة في ميدان استغلال الطاقة الشمسية .

بالإضافة لما ذكر تمتاز الطاقة الشمسية بالمقارنة مع مصادر الطاقة الأخرى بما يلي :-

إن التقنية المستعملة فيها تبقى بسيطة نسبياً وغير معقدة بالمقارنة مع التقنية المستخدمة في مصادر الطاقة الأخرى .

توفير عامل الأمان البيئي حيث أن الطاقة الشمسية هي طاقة نظيفة لا تلوث الجو وتترك فضلات مما يكسبها وضعاً خاصا في هذا المجال وخاصة في القرن القادم.

تحويل الطاقة الشمسية 

يمكن تحويل الطاقة الشمسية إلى طاقة كهربائية وطاقة حرارية من خلال آليتي التحويل الكهروضوئية والتحويل الحراري للطاقة الشمسية ، ويقصد بالتحويل الكهروضوئية تحويل الإشعاع الشمسي أو الضوئي مباشرة إلى طاقة كهربائية بوساطة الخلايا الشمسية ( الكهروضوئية ) ، وكما هو معلوم هناك بعض المواد التي تقوم بعملية التحويل الكهروضوئية تدعى اشتباه الموصلات كالسيليكون والجرمانيوم وغيرها . وقد تم اكتشاف هذه الظاهرة من قبل بعض علماء الفيزياء في أواخر القرن التاسع عشر الميلادي حيث وجدوا أن الضوء يستطيع تحرير الإلكترونات من بعض المعادن كما عرفوا أن الضوء الأزرق له قدرة أكبر من الضوء الأصفر على تحرير الإلكترونات وهكذا . وقد نال العالم اينشتاين جائزة نوبل في عام 1921م لاستطاعته تفسير هذه الظاهرة .

وقد تم تصنيع نماذج كثيرة من الخلايا الشمسية تستطيع إنتاج الكهرباء بصورة علمية وتتميز الخلايا الشمسية بأنها لا تشمل أجزاء أو قطع متحركة ، وهي لا تستهلك وقوداً ولا تلوث الجو وحياتها طويلة ولا تتطلب إلا القليل من الصيانة . ويتحقق أفضل استخدام لهذه التقنية تحت تطبيقات وحدة الإشعاع الشمسي ( وحدة شمسية ) أي بدون مركزات أو عدسات ضوئية ولذا يمكن تثبيتها على أسطح المباني ليستفاد منه في إنتاج الكهرباء وتقدر عادة كفاءتها بحوالي 20% أما الباقي فيمكن الاستفادة منه في توفير الحرارة للتدفئة وتسخين المياه . كما تستخدم الخلايا الشمسية في تشغيل نظام الاتصالات المختلفة وفي إنارة الطرق والمنشآت وفي ضخ المياه وغيرها .

أما التحويل الحراري للطاقة الشمسية فيعتمد على تحويل الإشعاع الشمسي إلى طاقة حرارية عن طريق المجمعات ( الأطباق ) الشمسية والمواد الحرارية .فإذا تعرض جسم داكن للون ومعزول إلى الإشعاع الشمسي فإنه يمتص لإشعاع وترتفع درجة حرارته . يستفاد من هذه الحرارة في التدفئة والتبريد وتسخين المياه وتوليد الكهرباء وغيرها . وتعد تطبيقات السخانات الشمسية هي الأكثر انتشاراً في مجال التحويل الحراري للطاقة الشمسية . يلي ذلك من حيث الأهمية المجففات الشمسية التي يكثر استخدامها في تجفيف بعض المحاصيل الزراعية مثل التمور وغيرها كذلك يمكن الاستفادة من الطاقة الحرارية في طبخ الطعام ، حيث أن هناك أبحاث تجري في هذا المجال لإنتاج معدات للطهي تعمل داخل المنزل بدلا من تكبد مشقة الجلوس تحت أشعة الشمس أثناء الطهي . 

ورغم أن الطاقة الشمسية قد أخذت تتبوأ مكان هامة ضمن البدائل المتعلقة بالطاقة المتجددة ، إلا أن مدى الاستفادة منها يرتبط بوجود أشعة الشمس طيلة وقت الاستخدام أسوة بالطاقة التقليدية. وعليه يبدو أن المطلوب من تقنيات بعد تقنية وتطوير التحويل الكهربائي والحراري للطاقة الشمسية هو تقنية تخزين تلك الطاقة للاستفادة منها أثناء فترة احتجاب الإشعاع الشمسي . وهناك عدة طرق تقنية لتخزين الطاقة الشمسية تشمل التخزين الحراري الكهربائي والميكانيكي والكيميائي والمغناطيسي . وتعد بحوث تخزين الطاقة الشمسية من أهم مجالات التطوير اللازمة في تطبيقات الطاقة الشمسية وانتشارها على مدى واسع ، حيث أن الطاقة الشمسية رغم أنها متوفرة إلا نها ليست في متناول اليد وليست مجانية بالمعني المفهوم . فسعرها الحقيقي عبارة عن المعدات المستخدمة لتحويلها من طاقة كهرومغناطيسية إلى طاقة كهربائية أو حرارية . وكذلك تخزينها إذا دعت الضرورة . ورغم أن هذه التكاليف حالياً تفوق تكلفة إنتاج الطاقة التقليدية إلا أنها لا تعطي صورة كافية عن مستقبلها بسبب أنها أخذة في الانخفاض المتواصل بفضل البحوث الجارية والمستقبلية

الاثنين، 26 أغسطس 2013

السخانات والطبخات الشمسية

السخانات الشمسية
تتركب السخانات الشمسية بصفة عامة من سطح امتصاص الأشعة الشمسية وقنوات سريان وسيط التسخين وعوازل حرارية لمنع تسرب الحرارة المكتسبة في وسيط التسخين ألى الوسط المحيط . وسوف نتحدث عن هذه المكونات باختصار شديد فيما يلي :
1- سطح الامتصاص :
يصنع سطح الامتصاص في الغالب من معدن مطلي بألوان داكنة وذلك لزيادة معدل امتصاص حيث تتميز الألوان الداكنة بمعدل عال الامتصاص الأشعة الشمسية يصل إلى 98% ولكن يعاب على الألوان الداكنة قابليتها الشديدة لفقد الحرارة بطريقة الإشعاع حيث يصل ذلك المعدل إلى 90% بعبارة أخرى فإن السطح الماص الداكن قادر على امتصاص ما نسبته 98% من الطاقة الساقطة عليه ولكنه سيعيد إشعاع ما نسبته 90% من الطاقة المكتسبة لتصبح الاستفادة من جزء صغير فقط من الطاقة الشمسية الساقطة على السخان وستضيع النسبة الكبرى سدي من أجل ذلك تستخدم أنواع خاصة من الطلاء ذات معدل امتصاص عالي ومعدل إشعاع منخفض وتسمي مثل هذه الطلاءات بالطلاءات الانتقائية (Selective Coatings ) ومن أمثلة هذه الطلاءات أكاسيد الكروم والكوبالت .
2- قنوات سريان وسيط التسخين :
تصنع هذه القنوات عادة من معادن مثل النحاس والفولاذ أو من المطاط وهي تختلف من تطبيق إلى آخر باختلاف نوع الوسيط وكذلك باختلاف مادة سطح الامتصاص ، فهناك قنوات مستطيلة ذات مساحات كبيرة ( 10x 15 سنتيمترات ) لتسخين الهواء . وهناك قنوات دائرية ذات أقطار صغيرة ( أنابيب أقطار بحدود 1 سنتيمتر) لتسخين السوائل .
3- العازل الحراري :
عندما ترتفع درجة الحرارة داخل السخانات بالمقارنة بالجو المحيط بها يصبح هناك إمكانية لفقد هذه الحرارة .بالتوصيل وذلك عن طريق جوانب السخان والجهة السفلية منه ، وبالحمل ، والإشعاع عن طريق الغلاف الزجاجي ، وعليه يمكن الاستعانة بمواد وأساليب خاصة للحد من هذه الفواقد حسب نوعية الفقد وذلك على النحو التالي : -
  1. الفقد بالتوصيل : ويمكن الحد منه بإحاطة جوانب وأسفل الماص وأنابيب التسخين بمواد خاصة ذات توصيلية حرارية متدينة متدنية مثل الصوف الزجاجي الألياف الزجاجية والبولي ستيرين .
  2. الفقد بالحمل : ويمكن الحد منه بسحب الهواء الموجود بين الأغطية الزجاجية أو يوضع أنابيب التسخين مع السطح الماص دخل أنابيب زجاجية مفرغة من الهواء .
  3. الفقد الإشعاع : ويمكن الحد منه باستخدام أغلفة زجاجية منفذة للأشعة القصيرة من الشمس وفي نفس الوقت معتمة بحيث تمنع انعكاس الأشعة ذات الموجات الطويلة الصادرة من السطح الماص .
آلية عمل السخانات
تتم آلية عمل السخانات بأن يمتص السطح الماص أشعة الشمس الساقطة فترتفع درجة حرارته ، يتبع ذلك ارتفاع في درجة حرارة المائع المار في أنابيب التسخين والتبسيط طريقة عمل السخانات الشمسية سيتم التطرق إلى ثلاثة أمور أساس هي :
* آلية التسخين ، * والسريان داخل السخان ، * وآلية الدفع .
1- آلية التسخين
عند ما تسقط الأشعة المباشرة أو غير المباشرة على السطح الماص فإن درجة حرارته ترتفع مقارنة بدرجة حرارة المائع المار في الأنابيب فيحدث فرق في درجة الحرارة ينتج عنه انتقال الحرارة العالية ( فيما بين الأنابيب ) إلى مناطق سريان المائع ذات الحرارة المنخفضة وبالتالي ترتفع درجة حرارة المائع بين أجزاء من الدرجة إلى عشرات الدرجات المئوية تبعاً لمقدار الإشعاع الشمسي ومعدل السريان داخل أنابيب التسخين .
2- السريان داخل السخان
يدخل المائع البارد نسبياً إلى أنبوب التوزيع في أسفل السخان ( السخانات ذات السريان المتوازي ) ومن هذا الأنبوب يتوزع المائع على أنابيب موازية صاعدة وذات أقطار صغيرة ومن ثم يجمع في أنبوب التجميع الرئيس في أعلى السخان حيث يتم دفع المائع الحار نسبياً إلى خارج السخان كما تم توضيحه فشكل (2) .
أما في حالة السريان المتصل فيدخل المائع إلى أنبوب التسخين الذي يغطي أغلب مساحة السطح الماص – بسبب أنه مصنع بشكل متعرج – فيتحرك الماء يميناً وشمالاً في اتجاه تصاعدي حتى يخرج من أعلى السخان بدون أن يكون هناك أي تفريغ للمائع أو تغيير في الأقطار كما هو موضح في الشكل (2) .
3- آلية الدفع
وهي الوسيلة التي يتم بواسطتها نقل المائع الساخن من السخان إلى الخزان ونقل المائع البارد من الخزان إلى السخان وتحريك المائع داخل السخان . وتنقسم آلية الدفع إلى قسمين هما :
* النظام الطبيعي ، * والنظام القسري .
  1. النظام الطبيعي : يمتاز نظام السريان الطبيعي ببساطته ورخص تكاليفه ، فهو يعتمد على المبدأ الفيزيائي الحراري القائل بأن أي ارتفاع في درجة حرارة المائع يتبعه انخفاض في كثافته ، ولتطبيق هذا المبدأ في أنظمة التسخين يجب أن يكون أدنى مستوى في الخزان يوازي أو يعلو على أعلى مستوى في السخان ، فعند دخول المائع إلى السخان بدرجة حرارة معينة فإنه يمتص الحرارة من السطح الماص لترتفع درجة حرارته كما ذكر آنفاً ، ويتبع ذلك انخفاض في لكثافة ، أي أن وزن المائع بالنسبة لوحدة الحجم سيقل وبالتالي فإن وحدة حجميه من المائع داخل السخان ستكون أخف من الوحدة الحجميه عند نفس المستوى خارج السخان ( داخل الأنبوب الذي يصل مدخل السخان بالخزان ) وينتج عن هذا الفرق استمرار صعود المائع داخل السخان باكتسابه للحرارة ودخول المائع البارد القادم من الخزان . وبالطبع سيكون هناك وسيلة لمنع انعكاس اتجاه الدورة في الليل أو عند انعدام الإشعاع الشمسي لأن انعكاس الاتجاه يعني زيادة في المعدل الفقد الحراري من نظام التسخين .
  2. نظام السريان القسري : نظراً الصعوبة تركيب الخزانات فوق مستوى السخانات لكونها خزانات مركزية ( أي أن كل وحدة سكنية أو صناعية بها خزان واحد لتجميع الموائع ذات درجة الحرارة العالية لتقليل الفواقد الحرارية ) وذلك لاعتبارات الوزن ( وللاعتبارات الجمالية أيضاً ) فإن المبدأ الذي يقوم عليه السريان الطبيعي سيختل وبالتالي يستعان بمضخة تقوم بتدوير المائع بين الخزان والسخان خلالفترات توفير الإشعاع الشمسي . وحتى لا تستمر الدورة في الليل عند انخفاض أو انعدام الإشعاع الشمسي يضاف محبس يقوم باستشعار حرارة الخزن وآخر باستشعار حرارة المائع الخارج من السخان ووحدة تحكم تفاضلية مهمتها إيقاف المضخة عندما تكون حرارة الخزان بمقدار يتجاوز الفقد في أنابيب التوصيل بين الخزان والسخان .
الطباخات الشمسية
لقد كان استخدام حرارة الشمس المباشرة من أهم الحلول التي طرحت لاستعمالها طاقة للطهي ، وذلك لقلة تكاليفها ووفرتها وسهولة الحصول عليها ، وقد أدي ذلك إلى تصميم وتطوير الطباخات الشمسية ، ويعد هذا الاستخدام من أبسط استخدامات الطاقة الشمسية خاصة في المجتمعات التي تتوفر فيها هذه الطاقة مثل المملكة العربية السعودية وغيرها من البلدان التي حباها الله بنعمة الشمس المشرقة في أغلب الأوقات .
الأساس العلمي للطبخ الشمسي
يعتمد الأساس العملي للطبخ الشمسي على الاستفادة من مبدأ الانحباس الحراري الناجم عن سقوط الإشعاع الشمسي وانعكاس داخل صندوق معزول من جميع جوانبه بعازل حراري عدا الجانب الأعلى المواجه للشمس فيغطى بلوح من الزجاج أو البلاستيك الشفاف ، كما يتم طلاء أسطحه الداخلية بلون داكن غير لامع ، لكي يقوم بامتصاص أكبر قدر ممكن من الحرارة اعتماداً على نظرية بلانك للأجسام الداكنة .
عند سقوط أشعة الشمس على السطح الزجاجي فإن الموجات القصيرة تنفذ إلى داخل الصندوق أما الموجات الطويلة فإن جزء كبير منها ينعكس إلى الخارج وبما أن الموجات الطويلة ليست ذات طاقة عالية مقارنة بالموجات القصيرة فإن الفاقد بالانعكاس يعد ضئيلاً . وبذلك فإن الأشعة الممتصة بوساطة السطح الداكن تتحول إلى طاقة حرارية ترفع درجة الحرارة داخل الصندوق . يساعد وجود العازل الحراري للصندوق على احتفاظه بقدر كبير من الطاقة . أما الغطاء الزجاجي ، فالبرعم من أنه يساعد على فقد جزء من الطاقة إلى الخارج عن طريق الانكسار إلا أنه يعمل على انعكاس الطاقة إلى داخل الصندوق ( الانحباس الحراري ) ، وكمثال على هذه الظاهرة في حياتنا اليومية نجد أن درجة الحرارة داخل السيارة المعروضة للشمس أعلى منها خارجها ، وذلك لان حرارة الشمس عندما تنفذ مخترقة زجاج السيارة فإنها تنحبس في الداخل عن طريق الانعكاس.
الطباخ الشمسي البسيط
يتكون الطباخ الشمسي البسيط من صندوق معزول عزلاً جيداً من جميع وجوهه الخمسة ويغطى وجهه السادس – المواجه للشمس – بلوح من الزجاج شكل (1)
يوضع وعاء الطهي وما فيه من طعام داخل الصندوق وعند تعريضه لأشعة الشمس تبدأ درجة حرارته في الارتفاع ، وتبعا لذلك تأخذ درجة حرارة الوعاء في الارتفاع حتى تصل إلى درجة الطهي المناسبة لنوع الطعام الموجود في الوعاء ومما يجدر ذكره أن درجة الحرارة في الوعاء تكون دائماً اكبر من درجة الحرارة على جدران الصندوق وذلك بسبب ظاهرة الانحباس الحراري . وتشير البيانات الموضحة في شكل (1) إلى أن درجة حرارة الجزء الأعلى من الوعاء أكبر من درجة حرارة الجزء الأوسط والأسفل .
يختلف الوقت اللازم لإنضاج الطعام تبعاً لنوعه ، فمثلاً يحتاج إنضاج لأرز إلى حدود الساعتين واللحم إلى ثلاث ساعات ، أما قطع اللحم الكبيرة وأنواع المرق والحبوب فقد تستغرق ست ساعات وبين الجدول (1) أزمنة تقريبية الأنواع مختلفة من الطعام . يمكن التحكم إلى حد ما بدرجات الحرارة في الطباخات الشمسية فعندما نريد الحصول درجة الحرارة القصوى فإنه يجب وضع الطباخ في موجهة الشمس تماما ، أما عند ما نريد الحصول على درجات حرارة أقل ، وذلك للمحافظة على درجات حرارة أقل وذلك للمحافظة على سخونة الطعام فقط ، فإنه يجب وضع الطباخ بشكل منحرف عن مجال الشمسي وبالتالي لا تسقط الأشعة عمودية على الطباخ فتنخفض درجة حرارته .
يشترط عند استخدام هذا النوع من الطباخات أن تكون الشمس عمودية على الوجه العلوي الشفاف من الطباخ الشمسي ، ويكون ذلك عادة وسط النهار ، وللتغلب على القصور تم تطوير عدة أنواع من الطباخات الشمسية البسيطة منها ما يلي :

  1. الطباخ ذو المرآة الوحدة
توضح الصورة (1 ) طباخ شمسي ذو مرا ة واحدة تتيح له العمل دون الاعتماد على الزاوية التي تسقط بها أشعة الشمس وليس بالضرورة أن تكون الأشعة عمودية ، ولكن يجب فقط أن تنعكس أشعتها من المرأة إلى صندوق الطباخ وقد زودت المرأة برفع يمكن بوساطته تغيير زاوية ميل المرأة مع تغير فصول السنة حتى يتم عكس الأشعة الشمسية في كل الأوقات إلى الصندوق ، أي أن هناك متابعة فصلية سواء كان في الشتاء أو في الربيع أو في الصيف أو في الخريف . وقد زود الطباخ كذلك بجهاز يمكنه من متابعة الشمس أثناء اليوم الواحد وذلك بالدوران حول محوره الرأسي لكي يستقبل الشمس مع حركتها الدائبة في السماء ، يعاب على هذا النوع من الطباخات الشمسية ضرورة وقوف الشخص الذي يقوم بتحريك المرآة ، أو من يتولى الطهي والخروج عدة مرات لمتابعة الشمس مما يمثل عبئاً ثقيلاً في استخدام هذا النظام.


  1. الطباخ ذو المرايا الثلاث
تبين الصورة (2) طباخ شمسي ذو ثلاث مرايا يتم ضبطها لاستقبال أشعة الشمس من الشروق إلى الغروب ،وبذلك يتم تقريبا متابعة الشمس طوال النهار دون الحاجة إلى تعديل وضع الطباخ نفسه ولكي تعطي المرايا أفضل النتائج فإن الأمر يحتاج – في البداية –إلى دراسات ميدانية لتحديد أنسب الأوضاع ، حيث لا يوجد طرق حسابية ( نظرية ) يمكن تطبيقها ، كما يجب مراعاة اختلاف الأوضاع من فصل إلى فصل إلى آخر .
ومع أن هذا التصميم حل إحدى المشاكل المهمة في الطباخات الشمسية البسيطة وهي متابعة الشمس ، إلا انه لم يستطيع توفير درجات الحرارة العالية اللازمة لإنضاج أنواع معينة من الطعام ، ولم يحل مشكلة تعرض المستخدم لحرارة الشمس .

مختصر من مجلة العلوم والتقنية